

The strategies for climate protection in Bolzano How to act in order to reach a CO2 neutral balance

Bolzano

Inhabitants	104.000
Surface	5.240 ha
Settlement area	900 ha
Industry	450 ha
Agriculture	1.300 ha
Forest	2.600 ha

0 0,5

2

Total energy consumtion 2007

Total CO2 emissions 2007

Energy consumtion per capita 2007

CO2 emissions per capita

This is the challenge

C

MWh Energy consumption per capita

Reduction energy consumption 54% Reduction CO2 emissions: 80%

CO₂ emissions per capita

Mobility

Scenario 2030 passenger transport

- the number of registered cars in Bolzano will decrease from 53.000 to 40.000
- the average km traveled per car will decrease to the half
- the average petrol consumption will decrease to the half for 66% of the cars
- 33% of the car fleet will run with electricity (consumption 0,2 KWh/km)
- the number of motorcicle will decrease to the half (this thank the e-bikes)

Bolzano modalsplit

New tramway Bolzano – Caldaro

New urban tramway

Today 29% of the movements in the city are done by bike \rightarrow objective 2030: 40%

Carsharing Like Switzerland

100 cars with carsharing can substitude 2000 private cars

Displacement of the motoway

Today

Tomorrow

Transport - objective 2030 consumption and emissions

Heat for space heating and process heat

Bolzano 2007 – Consumption for heating and infrastructure

Bolzano – new district with standard Climahouse A 950 appartments

 $HWB_{NGF} \le 30 \text{ kWh}/(m^2 \cdot a)$ $HWB_{NGF} \le 50 \text{ kWh}/(m^2 \cdot a)$ $HWB_{NGF} \le 70 \text{ kWh/(m^2 \cdot a)}$ $HWB_{NGF} \le 90 \text{ kWh/(m^2.a)}$ $HWB_{NGF} \le 120 \text{ kWh/(m^2-a)}$

 $HWB_{NGF} \le 160 \text{ kWh}/(\text{m}^2 \cdot \text{a})$

alto fabbisogno di calore

Per edificazioni in modo sostenibili viene conferita la certificazione +

Reduction potential of the consumption of energy for heating

Simulation of energetic retrofitting with a cubage bonus of 20%

Heat for space heating and process heat – objective 2030 consumtion and emissions

Electricity production

Hydropower Production 117 GWh

Photovoltaic 100 GWh = surface of 70 ha II 5% of the settlement area

Cogeneration incinerator Production: 200 GWh thermic and 90 GWh electric

District heating and cooling net

Electricity – objective 2030 Consumtion and emissions

Overall result

Bolzano 2030 Total energy consumption and CO2 emissions per capita

Bolzano objective 2030 Economic savings

Conclusions

It is not necessary to believe in climate change as the reduction of CO2 emissions entails formidable economic savings.

The question to pose is not: how much will the reduction of CO2 emissions cost.

The correct question is the following: How much longer do we want to squander money for financing the greenhouse effect?

Every economists should suggest us to act immediately.

Thank You